Designed metalloprotein stabilizes a semiquinone radical
نویسندگان
چکیده
منابع مشابه
Ca(2+) stabilizes the semiquinone radical of pyrroloquinoline quinone.
Spectroelectrochemical studies were performed on the interaction between Ca(2+) and pyrroloquinoline quinone (PQQ) in soluble glucose dehydrogenase (sGDH) and in the free state by applying a mediated continuous-flow column electrolytic spectroelectrochemical technique. The enzyme forms used were holo-sGDH (the holo-form of sGDH from Acinetobacter calcoaceticus) and an incompletely reconstituted...
متن کاملHydrolytic catalysis and structural stabilization in a designed metalloprotein
Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions-a Zn(II) ion, which is important for...
متن کاملArtificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical
The interaction of a number of first-row transition-metal ions with a 2,2'-bipyridyl alanine (bpyA) unit incorporated into the lactococcal multidrug resistance regulator (LmrR) scaffold is reported. The composition of the active site is shown to influence binding affinities. In the case of Fe(II), we demonstrate the need of additional ligating residues, in particular those containing carboxylat...
متن کاملThe first semiquinone-bridged bisdithiazolyl radical conductor: a canted antiferromagnet displaying a spin-flop transition.
The alternating ABABAB π-stacked bis-1,2,3-dithiazolyl radical 2a (2, R(2)=Ph) has a conductivity σ of 3×10(-5) S cm(-1) at 300 K, and orders as a spin-canted antiferromagnet (T(N)=4.5 K) which undergoes a spin-flop transition to a field-induced ferromagnetic state saturating (at 2 K) at H ∼20 kOe.
متن کاملOxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone.
The oxidation and toxicity of dopamine is believed to contribute to the selective neurodegeneration associated with Parkinson disease. The formation of reactive radicals and quinones greatly contributes to dopaminergic toxicity through a variety of mechanisms. The physiological metabolism of dopamine to 3,4-dihydroxyphenylacetaldehyde (DOPAL) via monoamine oxidase significantly increases its to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemistry
سال: 2016
ISSN: 1755-4330,1755-4349
DOI: 10.1038/nchem.2453